Characterization of pore coking in catalyst for thermal down-hole upgrading of heavy oil

نویسندگان

  • Paul Dim
  • Abarasi Hart
  • Joseph Wood
  • Bill Macnaughtan
  • Sean P. Rigby
چکیده

Heavy oil and bitumen are a potential alternative energy source to conventional light crude. However, recovery of these resources can have substantial environmental impact. Downhole upgrading offers the prospect of both improving recovery, and decreasing environmental impact. However, use of catalysts to enhance downhole upgrading is limited by the need for one that can survive the extreme coking conditions arising from the cracking of heavy oil. In this work the potential of hydrogen donors to improve upgrading and enhance catalyst lifetime was considered. In order to extract detailed information on the catalyst structural evolution during reaction a novel parallel adsorption and thermoporometry characterization method was used. This technique allows detailed information to be obtained on the spatial juxtaposition of different pores, and their relative connectivity, as well as on size distributions. For catalyst operated at the conditions studied, it has been found that coking arises in smaller pores branching off the larger pores providing access to the catalyst interior. It has been found that while coking following use of different types of hydrogen donor leads

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of Mesopore Extrudate Gamma Alumina through Thermal Ammonia Treatment

A particular type of mesopore extrudates gamma alumina was prepared; which is used as the catalyst in the heavy oil desulfurization unit. Extrudates gamma-alumina support has been made of the boehmite powder from Nephlinsinite mine ores (Surface Area (S.A.) >200 m2/g, Pore Volume (P.V.) =0.48 cm3/g, Average Pore Diameter (A.P.D.) = 8.10 nm); then, many samples of extru...

متن کامل

Prediction of the Products Yield of Delayed Coking for Iranian Vacuum Residues

In this work, new correlations are proposed to predict the products yield of delayed coking as a function of CCR and temperature based on the experimental results. For this purpose, selected Iranian vacuum residues with Conradson carbon residue (CCR) values between 13.40-22.19 wt.% were heated at a 10 °C/min heating rate and thermally cracked in a temperature range of 400-500 °C in a laboratory...

متن کامل

The Effect of Coking on Kinetics of HDS Reaction under Steady and Transient States

A study was made of the coking of a commercial fresh sulfide Ni-Mo/Al2O3 catalyst in a fixed-bed reactor. The catalyst was coked using different coke precursors in the gas oil under accelerated conditions at temperatures of 400 to 450°C to yield different deactivated catalysts containing 2-20 wt% C. Two cases were studied; crushed catalyst without diffusional ...

متن کامل

Vacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite

A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...

متن کامل

Effect of fuel injection discharge curve and injection pressure on upgrading power and combustion parameters in HD diesel engine with CFD simulation

Abstract: In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017